basldfalsd ldajsfsl das ist ein test \(a+b=\sqrt{c}\)
\[
\begin{align*}
\mathbf{x}' = R \mathbf{x} + \mathbf{t}
\end{align*}
\]
with rotation matrix that rotates towards left: \[
\begin{align*}
R =
\begin{pmatrix}
\cos\alpha & \sin\alpha \
-\sin\alpha & \cos\alpha
\end{pmatrix}
\end{align*}
\]
Generate Maxima Code to find the three parameters of a rigid transform
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| (with-open-file (s "/dev/shm/optim.max" :direction :output
:if-exists :supersede
:if-does-not-exist :create)
(format s "load(minpack)$~%")
(format s "g(p,tx,ty):=[")
(loop for (dist imdist iml imr lx ly x y) in
*cleaned-point-correspondence* and i from 0 do
(format s "cos(p)*(~f)+sin(p)*(~f)+tx-(~f), -sin(p)*(~f)+cos(p)*(~f)+ty-(~f)~c~%" x y lx x y ly (if (= i (1- (length *cleaned-point-correspondence*)))
#\Space #\,)))
(format s "];~%")
(format s "minpack_lsquares(g(p,tx,ty),[p,tx,ty],[.04,244.2,-0.7]);~%"))
;; maxima fitting result:
;; [[.05325489544613618, - 244.3662184306725, .01563720868233511], 25.96634987708376, 1]
|